Namespaces
Variants

std::ranges:: replace, std::ranges:: replace_if

From cppreference.net
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy , ranges::sort , ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17) (C++11)
(C++20) (C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
Operations on uninitialized storage
Return types
Definido en el encabezado <algorithm>
Firma de llamada
(1)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class T1, class T2, class Proj = std:: identity >
requires std:: indirectly_writable < I, const T2 & > &&
std:: indirect_binary_predicate
< ranges:: equal_to , std :: projected < I, Proj > , const T1 * >
constexpr I replace ( I first, S last, const T1 & old_value,

const T2 & new_value, Proj proj = { } ) ;
(desde C++20)
(hasta C++26)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
class T1 = std :: projected_value_t < I, Proj > , class T2 = T1 >
requires std:: indirectly_writable < I, const T2 & > &&
std:: indirect_binary_predicate
< ranges:: equal_to , std :: projected < I, Proj > , const T1 * >
constexpr I replace ( I first, S last, const T1 & old_value,

const T2 & new_value, Proj proj = { } ) ;
(desde C++26)
(2)
template < ranges:: input_range R,

class T1, class T2, class Proj = std:: identity >
requires std:: indirectly_writable < ranges:: iterator_t < R > , const T2 & > &&
std:: indirect_binary_predicate
< ranges:: equal_to ,
std :: projected < ranges:: iterator_t < R > , Proj > , const T1 * >
constexpr ranges:: borrowed_iterator_t < R >
replace ( R && r, const T1 & old_value,

const T2 & new_value, Proj proj = { } ) ;
(desde C++20)
(hasta C++26)
template < ranges:: input_range R,

class Proj = std:: identity ,
class T1 = std :: projected_value_t < ranges:: iterator_t < R > , Proj > ,
class T2 = T1 >
requires std:: indirectly_writable < ranges:: iterator_t < R > , const T2 & > &&
std:: indirect_binary_predicate
< ranges:: equal_to ,
std :: projected < ranges:: iterator_t < R > , Proj > , const T1 * >
constexpr ranges:: borrowed_iterator_t < R >
replace ( R && r, const T1 & old_value,

const T2 & new_value, Proj proj = { } ) ;
(desde C++26)
(3)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class T, class Proj = std:: identity ,
std:: indirect_unary_predicate < std :: projected < I, Proj >> Pred >
requires std:: indirectly_writable < I, const T & >
constexpr I replace_if ( I first, S last, Pred pred,

const T & new_value, Proj proj = { } ) ;
(desde C++20)
(hasta C++26)
template < std:: input_iterator I, std:: sentinel_for < I > S,

class Proj = std:: identity ,
class T = std :: projected_value_t < I, Proj > ,
std:: indirect_unary_predicate < std :: projected < I, Proj >> Pred >
requires std:: indirectly_writable < I, const T & >
constexpr I replace_if ( I first, S last, Pred pred,

const T & new_value, Proj proj = { } ) ;
(desde C++26)
(4)
template < ranges:: input_range R, class T, class Proj = std:: identity ,

std:: indirect_unary_predicate <
std :: projected < ranges:: iterator_t < R > , Proj >> Pred >
requires std:: indirectly_writable < ranges:: iterator_t < R > , const T & >
constexpr ranges:: borrowed_iterator_t < R >

replace_if ( R && r, Pred pred, const T & new_value, Proj proj = { } ) ;
(desde C++20)
(hasta C++26)
template < ranges:: input_range R, class Proj = std:: identity ,

class T = std :: projected_value_t < ranges:: iterator_t < R > , Proj > ,
std:: indirect_unary_predicate <
std :: projected < ranges:: iterator_t < R > , Proj >> Pred >
requires std:: indirectly_writable < ranges:: iterator_t < R > , const T & >
constexpr ranges:: borrowed_iterator_t < R >

replace_if ( R && r, Pred pred, const T & new_value, Proj proj = { } ) ;
(desde C++26)

Reemplaza todos los elementos que satisfacen criterios específicos con new_value en el rango [ first , last ) .

1) Reemplaza todos los elementos que son iguales a old_value , usando std:: invoke ( proj, * i ) == old_value para comparar.
3) Reemplaza todos los elementos para los cuales el predicado pred evalúa a true , donde la expresión evaluada es std:: invoke ( pred, std:: invoke ( proj, * i ) ) .
2,4) Igual que (1,3) , pero utiliza r como el rango, como si usara ranges:: begin ( r ) como first y ranges:: end ( r ) como last .

Las entidades similares a funciones descritas en esta página son algorithm function objects (conocidas informalmente como niebloids ), es decir:

Contenidos

Parámetros

first, last - el par iterador-centinela que define el rango de elementos a procesar
r - el rango de elementos a procesar
old_value - el valor de los elementos a reemplazar
new_value - el valor a utilizar como reemplazo
pred - predicado a aplicar a los elementos proyectados
proj - proyección a aplicar a los elementos

Valor de retorno

Un iterador igual a last .

Complejidad

Exactamente ranges:: distance ( first, last ) aplicaciones del predicado correspondiente comp y cualquier proyección proj .

Notas

Debido a que el algoritmo toma old_value y new_value por referencia, puede tener un comportamiento inesperado si cualquiera de ellos es una referencia a un elemento del rango [ first , last ) .

Macro de prueba de características Valor Estándar Característica
__cpp_lib_algorithm_default_value_type 202403 (C++26) Inicialización de lista para algoritmos ( 1-4 )

Implementación posible

reemplazar (1,2)
struct replace_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
             class T1 = std::projected_value_t<I, Proj>, class T2 = T1>
    requires std::indirectly_writable<I, const T2&> && 
             std::indirect_binary_predicate
                 <ranges::equal_to, std::projected<I, Proj>, const T1*>
    constexpr I operator()(I first, S last, const T1& old_value,
                           const T2& new_value, Proj proj = {}) const
    {
        for (; first != last; ++first)
            if (old_value == std::invoke(proj, *first))
                *first = new_value;
        return first;
    }
    template<ranges::input_range R, class Proj = std::identity
             class T1 = std::projected_value_t<ranges::iterator_t<R>, Proj>,
             class T2 = T1>
    requires std::indirectly_writable<ranges::iterator_t<R>, const T2&> &&
             std::indirect_binary_predicate<ranges::equal_to,
             std::projected<ranges::iterator_t<R>, Proj>, const T1*>
    constexpr ranges::borrowed_iterator_t<R>
        operator()(R&& r, const T1& old_value,
                   const T2& new_value, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), old_value,
                       new_value, std::move(proj));
    }
};
inline constexpr replace_fn replace{};
replace_if (3,4)
struct replace_if_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity, class T = std::projected_value_t<I, Proj>,
             std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
    requires std::indirectly_writable<I, const T&>
    constexpr I operator()(I first, S last, Pred pred,
                           const T& new_value, Proj proj = {}) const
    {
        for (; first != last; ++first)
            if (!!std::invoke(pred, std::invoke(proj, *first)))
                *first = new_value;
        return std::move(first);
    }
    template<ranges::input_range R, class Proj = std::identity,
             class T = std::projected_value_t<ranges::iterator_t<R>, Proj>
             std::indirect_unary_predicate
                 <std::projected<ranges::iterator_t<R>, Proj>> Pred>
    requires std::indirectly_writable<ranges::iterator_t<R>, const T&>
    constexpr ranges::borrowed_iterator_t<R>
        operator()(R&& r, Pred pred, const T& new_value, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::move(pred),
                       new_value, std::move(proj));
    }
};
inline constexpr replace_if_fn replace_if{};

Ejemplo

#include <algorithm>
#include <array>
#include <complex>
#include <iostream>
void println(const auto& v)
{
    for (const auto& e : v)
        std::cout << e << ' ';
    std::cout << '\n';
}
int main()
{
    namespace ranges = std::ranges;
    std::array p{1, 6, 1, 6, 1, 6};
    println(p);
    ranges::replace(p, 6, 9);
    println(p);
    std::array q{1, 2, 3, 6, 7, 8, 4, 5};
    println(q);
    ranges::replace_if(q, [](int x) { return 5 < x; }, 5);
    println(q);
    std::array<std::complex<double>, 2> nums{{{1, 3}, {1, 3}}};
    println(nums);
    #ifdef __cpp_lib_algorithm_default_value_type
        ranges::replace(nums, {1, 3}, {4, 2});
    #else
        ranges::replace(nums, std::complex<double>{1, 3}, std::complex<double>{4, 2});
    #endif
    println(nums);
}

Salida:

1 6 1 6 1 6
1 9 1 9 1 9
1 2 3 6 7 8 4 5
1 2 3 5 5 5 4 5
(1,3) (1,3)
(4,2) (4,2)

Véase también

copia un rango, reemplazando elementos que cumplen criterios específicos con otro valor
(objeto función de algoritmo)
reemplaza todos los valores que cumplen criterios específicos con otro valor
(plantilla de función)