Namespaces
Variants

std:: extreme_value_distribution

From cppreference.net
Definido en el encabezado <random>
template < class RealType = double >
class extreme_value_distribution ;
(desde C++11)

Produce números aleatorios de acuerdo con la Generalized extreme value distribution (también conocida como Gumbel Tipo I, log-Weibull, Fisher-Tippett Tipo I):

p(x;a,b) =
1
b
exp

a-x
b
- exp

a-x
b




std::extreme_value_distribution satisface todos los requisitos de RandomNumberDistribution .

Contenidos

Parámetros de plantilla

RealType - El tipo de resultado generado por el generador. El efecto es indefinido si este no es uno de float , double , o long double .

Tipos de miembros

Tipo de miembro Definición
result_type (C++11) RealType
param_type (C++11) el tipo del conjunto de parámetros, ver RandomNumberDistribution .

Funciones miembro

construye una nueva distribución
(función miembro pública)
(C++11)
restablece el estado interno de la distribución
(función miembro pública)
Generación
(C++11)
genera el siguiente número aleatorio en la distribución
(función miembro pública)
Características
(C++11)
devuelve los parámetros de la distribución
(función miembro pública)
(C++11)
obtiene o establece el objeto de parámetros de la distribución
(función miembro pública)
(C++11)
devuelve el valor mínimo potencialmente generado
(función miembro pública)
(C++11)
devuelve el valor máximo potencialmente generado
(función miembro pública)

Funciones no miembro

(C++11) (C++11) (removed in C++20)
compara dos objetos de distribución
(función)
realiza operaciones de entrada y salida en flujo para distribución de números pseudoaleatorios
(plantilla de función)

Ejemplo

#include <algorithm>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <map>
#include <random>
#include <vector>
template<int Height = 5, int BarWidth = 1, int Padding = 1, int Offset = 0, class Seq>
void draw_vbars(Seq&& s, const bool DrawMinMax = true)
{
    static_assert(0 < Height and 0 < BarWidth and 0 <= Padding and 0 <= Offset);
    auto cout_n = [](auto&& v, int n = 1)
    {
        while (n-- > 0)
            std::cout << v;
    };
    const auto [min, max] = std::minmax_element(std::cbegin(s), std::cend(s));
    std::vector<std::div_t> qr;
    for (typedef decltype(*std::cbegin(s)) V; V e : s)
        qr.push_back(std::div(std::lerp(V(0), 8 * Height,
                                        (e - *min) / (*max - *min)), 8));
    for (auto h{Height}; h-- > 0; cout_n('\n'))
    {
        cout_n(' ', Offset);
        for (auto dv : qr)
        {
            const auto q{dv.quot}, r{dv.rem};
            unsigned char d[]{0xe2, 0x96, 0x88, 0}; // Full Block: '█'
            q < h ? d[0] = ' ', d[1] = 0 : q == h ? d[2] -= (7 - r) : 0;
            cout_n(d, BarWidth), cout_n(' ', Padding);
        }
        if (DrawMinMax && Height > 1)
            Height - 1 == h ? std::cout << "┬ " << *max:
                          h ? std::cout << "│ "
                            : std::cout << "┴ " << *min;
    }
}
int main()
{
    std::random_device rd{};
    std::mt19937 gen{rd()};
    std::extreme_value_distribution<> d{-1.618f, 1.618f};
    const int norm = 10'000;
    const float cutoff = 0.000'3f;
    std::map<int, int> hist{};
    for (int n = 0; n != norm; ++n)
        ++hist[std::round(d(gen))];
    std::vector<float> bars;
    std::vector<int> indices;
    for (const auto& [n, p] : hist)
        if (const float x = p * (1.0f / norm); x > cutoff)
        {
            bars.push_back(x);
            indices.push_back(n);
        }
    draw_vbars<8,4>(bars);
    for (int n : indices)
        std::cout << ' ' << std::setw(2) << n << "  ";
    std::cout << '\n';
}

Salida posible:

               ████ ▅▅▅▅                                                        ┬ 0.2186
               ████ ████                                                        │
          ▁▁▁▁ ████ ████ ▇▇▇▇                                                   │
          ████ ████ ████ ████                                                   │
          ████ ████ ████ ████ ▆▆▆▆                                              │
          ████ ████ ████ ████ ████ ▁▁▁▁                                         │
     ▄▄▄▄ ████ ████ ████ ████ ████ ████ ▃▃▃▃                                    │
▁▁▁▁ ████ ████ ████ ████ ████ ████ ████ ████ ▆▆▆▆ ▃▃▃▃ ▂▂▂▂ ▁▁▁▁ ▁▁▁▁ ▁▁▁▁ ▁▁▁▁ ┴ 0.0005
 -5   -4   -3   -2   -1    0    1    2    3    4    5    6    7    8    9   10

Enlaces externos

Weisstein, Eric W. "Distribución de Valor Extremo." De MathWorld — Un recurso web de Wolfram.