Namespaces
Variants

std:: hermite, std:: hermitef, std:: hermitel

From cppreference.net
double hermite ( unsigned int n, double x ) ;

double hermite ( unsigned int n, float x ) ;
double hermite ( unsigned int n, long double x ) ;
float hermitef ( unsigned int n, float x ) ;

long double hermitel ( unsigned int n, long double x ) ;
(1)
double hermite ( unsigned int n, IntegralType x ) ;
(2)
1) Calcula los polinomios de Hermite (versión física) de grado n y argumento x .
2) Un conjunto de sobrecargas o una plantilla de función que acepta un argumento de cualquier tipo integral . Equivalente a (1) después de convertir el argumento a double .

Como todas las funciones especiales, hermite solo está garantizada para estar disponible en <cmath> si __STDCPP_MATH_SPEC_FUNCS__ está definido por la implementación con un valor de al menos 201003L y si el usuario define __STDCPP_WANT_MATH_SPEC_FUNCS__ antes de incluir cualquier cabecera de la biblioteca estándar.

Contenidos

Parámetros

n - el grado del polinomio
x - el argumento, un valor de tipo de punto flotante o entero

Valor de retorno

If no errors occur, value of the order- n Hermite polynomial of x , that is (-1) n
e x 2
d n
dx n
e -x 2
, is returned.

Manejo de errores

Los errores pueden ser reportados como se especifica en math_errhandling .

  • Si el argumento es NaN, se devuelve NaN y no se reporta un error de dominio.
  • Si n es mayor o igual que 128, el comportamiento está definido por la implementación.

Notas

Las implementaciones que no admiten TR 29124 pero sí admiten TR 19768, proporcionan esta función en el encabezado tr1/cmath y el espacio de nombres std::tr1 .

Una implementación de esta función también está disponible en boost.math .

Los polinomios de Hermite son las soluciones polinómicas de la ecuación u ,,
- 2xu ,
= -2nu
.

Los primeros son:

  • hermite(0, x) = 1 .
  • hermite(1, x) = 2x .
  • hermite(2, x) = 4x 2
    - 2
    .
  • hermite(3, x) = 8x 3
    - 12x
    .
  • hermite(4, x) = 16x 4
    - 48x 2
    + 12
    .

Ejemplo

(funciona como se muestra con gcc 6.0)

#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1
#include <cmath>
#include <iostream>
double H3(double x)
{
    return 8 * std::pow(x, 3) - 12 * x;
}
double H4(double x)
{
    return 16 * std::pow(x, 4) - 48 * x * x + 12;
}
int main()
{
    // spot-checks
    std::cout << std::hermite(3, 10) << '=' << H3(10) << '\n'
              << std::hermite(4, 10) << '=' << H4(10) << '\n';
}

Salida:

7880=7880
155212=155212

Véase también

Polinomios de Laguerre
(función)
Polinomios de Legendre
(función)

Enlaces externos

Weisstein, Eric W. "Polinomio de Hermite." De MathWorld--Un recurso web de Wolfram.