Namespaces
Variants

Standard library header <linalg> (C++26)

From cppreference.net
Standard library headers

Este encabezado es parte de la biblioteca numérica .

Contenidos

Clases

Definido en el espacio de nombres std::linalg
std::mdspan política de mapeo de diseño que representa una matriz cuadrada que almacena únicamente las entradas en un triángulo, en un formato contiguo empaquetado
(plantilla de clase)
std::mdspan política de acceso cuyo referencia representa el producto de un factor de escalado fijo y la referencia de su std::mdspan acceso anidado
(plantilla de clase)
std::mdspan política de acceso cuyo referencia representa el conjugado complejo de la referencia del std::mdspan acceso anidado
(plantilla de clase)
std::mdspan política de diseño de mapeo que intercambia los dos índices, extensiones y pasos más a la derecha de cualquier política de diseño de mapeo única
(plantilla de clase)

Etiquetas

Definido en el espacio de nombres std::linalg
describen el orden de los elementos en un std::mdspan con diseño linalg::layout_blas_packed
(etiqueta)
especifica si los algoritmos y otros usuarios de una matriz deben acceder al triángulo superior o al triángulo inferior de la matriz
(etiqueta)
especificar si los algoritmos deben acceder a las entradas diagonales de la matriz
(etiqueta)

Funciones

Definido en el espacio de nombres std::linalg
Transformaciones in situ
(C++26)
devuelve un nuevo std::mdspan de solo lectura calculado mediante el producto elemento por elemento del factor de escala y los elementos correspondientes del std::mdspan dado
(plantilla de función)
(C++26)
devuelve un nuevo std::mdspan de solo lectura cuyos elementos son los conjugados complejos de los elementos correspondientes del std::mdspan dado
(plantilla de función)
(C++26)
devuelve un nuevo std::mdspan que representa la transpuesta de la matriz de entrada mediante el std::mdspan dado
(plantilla de función)
devuelve una vista de transpuesta conjugada de un objeto
(plantilla de función)
Funciones BLAS 1
genera rotación de plano
(plantilla de función)
aplica rotación plana a vectores
(plantilla de función)
intercambia todos los elementos correspondientes de matriz o vector
(plantilla de función)
(C++26)
sobrescribe una matriz o vector con el resultado de calcular la multiplicación elemento por elemento por un escalar
(plantilla de función)
(C++26)
copia elementos de una matriz o vector en otra
(plantilla de función)
(C++26)
suma vectores o matrices elemento por elemento
(plantilla de función)
(C++26)
devuelve el producto punto no conjugado de dos vectores
(plantilla de función)
(C++26)
devuelve el producto punto conjugado de dos vectores
(plantilla de función)
devuelve la suma escalada de cuadrados de los elementos del vector
(plantilla de función)
devuelve la norma euclidiana de un vector
(plantilla de función)
devuelve la suma de los valores absolutos de los elementos del vector
(plantilla de función)
devuelve el índice del valor absoluto máximo de los elementos del vector
(plantilla de función)
devuelve la norma de Frobenius de una matriz
(plantilla de función)
devuelve la norma uno de una matriz
(plantilla de función)
devuelve la norma infinito de una matriz
(plantilla de función)
Funciones BLAS 2
calcula el producto matriz-vector
(plantilla de función)
calcula el producto matriz-vector simétrico
(plantilla de función)
calcula el producto matriz-vector hermítico
(plantilla de función)
calcula el producto matriz-vector triangular
(plantilla de función)
resuelve un sistema lineal triangular
(plantilla de función)
realiza una actualización de rango 1 no simétrica y no conjugada de una matriz
(plantilla de función)
realiza una actualización de rango-1 no simétrica conjugada de una matriz
(plantilla de función)
realiza una actualización de rango 1 de una matriz simétrica
(plantilla de función)
realiza una actualización de rango 1 de una matriz hermítica
(plantilla de función)
realiza una actualización de rango 2 de una matriz simétrica
(plantilla de función)
realiza una actualización de rango 2 de una matriz hermítica
(plantilla de función)
Funciones BLAS 3
calcula el producto matriz-matriz
(plantilla de función)
calcula el producto matriz-matriz simétrico
(plantilla de función)
calcula el producto matriz-matriz hermítico
(plantilla de función)
calcula el producto matriz-matriz triangular
(plantilla de función)
realiza actualización de rango k de una matriz simétrica
(plantilla de función)
realiza una actualización de rango k de una matriz hermítica
(plantilla de función)
realiza una actualización de rango 2k de una matriz simétrica
(plantilla de función)
realiza una actualización de rango 2k de una matriz hermítica
(plantilla de función)
resuelve múltiples sistemas lineales triangulares
(plantilla de función)

Sinopsis

namespace std::linalg {
// etiquetas de orden de almacenamiento
struct column_major_t;
inline constexpr column_major_t column_major;
struct row_major_t;
inline constexpr row_major_t row_major;
// etiquetas de triángulo
struct upper_triangle_t;
inline constexpr upper_triangle_t upper_triangle;
struct lower_triangle_t;
inline constexpr lower_triangle_t lower_triangle;
// etiquetas diagonales
struct implicit_unit_diagonal_t;
inline constexpr implicit_unit_diagonal_t implicit_unit_diagonal;
struct explicit_diagonal_t;
inline constexpr explicit_diagonal_t explicit_diagonal;
// class template layout_blas_packed
template<class Triangle, class StorageOrder>
class layout_blas_packed;
// conceptos y rasgos solo de exposición
template<class T>
struct __is_mdspan; // exposición solamente
template<class T>
concept __in_vector = /* ver descripción */; // exposición solamente
template<class T>
concept __out_vector = /* ver descripción */; // exposición solamente
template<class T>
concept __inout_vector = /* ver descripción */; // exposición solamente
template<class T>
concept __in_matrix = /* ver descripción */; // exposición solamente
template<class T>
concept __out_matrix = /* ver descripción */; // exposición solamente
template<class T>
concept __inout_matrix = /* ver descripción */; // exposición solamente
template<class T>
concept __possibly_packed_inout_matrix = /* ver descripción */; // exposición solamente
template<class T>
concept __in_object = /* ver descripción */; // exposición solamente
template<class T>
concept __out_object = /* ver descripción */; // exposición solamente
template<class T>
concept __inout_object = /* ver descripción */; // exposición solamente
// transformación escalada in situ
template<class ScalingFactor, class Accessor>
class scaled_accessor;
template<class ScalingFactor,
         class ElementType, class Extents, class Layout, class Accessor>
constexpr auto scaled(ScalingFactor scaling_factor,
                      mdspan<ElementType, Extents, Layout, Accessor> x);
// transformación conjugada in situ
template<class Accessor>
class conjugated_accessor;
template<class ElementType, class Extents, class Layout, class Accessor>
constexpr auto conjugated(mdspan<ElementType, Extents, Layout, Accessor> a);
// transformación in-situ transpuesta
template<class Layout>
class layout_transpose;
template<class ElementType, class Extents, class Layout, class Accessor>
constexpr auto transposed(mdspan<ElementType, Extents, Layout, Accessor> a);
// transformación conjugada transpuesta in situ
template<class ElementType, class Extents, class Layout, class Accessor>
constexpr auto conjugate_transposed(mdspan<ElementType, Extents, Layout, Accessor> a);
// algorithms
// calcular rotación de Givens
template<class Real>
struct setup_givens_rotation_result {
  Real c;
  Real s;
  Real r;
};
template<class Real>
struct setup_givens_rotation_result<complex<Real>> {
  Real c;
  complex<Real> s;
  complex<Real> r;
};
template<class Real>
setup_givens_rotation_result<Real> setup_givens_rotation(Real a, Real b) noexcept;
template<class Real>
setup_givens_rotation_result<complex<Real>>
setup_givens_rotation(complex<Real> a, complex<Real> b) noexcept;
// aplicar rotación de Givens calculada
template<__inout_vector InOutVec1, __inout_vector InOutVec2, class Real>
void apply_givens_rotation(InOutVec1 x, InOutVec2 y, Real c, Real s);
template<class ExecutionPolicy,
         __inout_vector InOutVec1, __inout_vector InOutVec2, class Real>
void apply_givens_rotation(ExecutionPolicy&& exec,
                           InOutVec1 x, InOutVec2 y, Real c, Real s);
template<__inout_vector InOutVec1, __inout_vector InOutVec2, class Real>
void apply_givens_rotation(InOutVec1 x, InOutVec2 y, Real c, complex<Real> s);
template<class ExecutionPolicy,
         __inout_vector InOutVec1, __inout_vector InOutVec2, class Real>
void apply_givens_rotation(ExecutionPolicy&& exec,
                           InOutVec1 x, InOutVec2 y, Real c, complex<Real> s);
// intercambiar elementos
template<__inout_object InOutObj1, __inout_object InOutObj2>
void swap_elements(InOutObj1 x, InOutObj2 y);
template<class ExecutionPolicy, __inout_object InOutObj1, __inout_object InOutObj2>
void swap_elements(ExecutionPolicy&& exec, InOutObj1 x, InOutObj2 y);
// multiplicar elementos por escalar
template<class Scalar, __inout_object InOutObj>
void scale(Scalar alpha, InOutObj x);
template<class ExecutionPolicy, class Scalar, __inout_object InOutObj>
void scale(ExecutionPolicy&& exec, Scalar alpha, InOutObj x);
// copiar elementos
template<__in_object InObj, __out_object OutObj>
void copy(InObj x, OutObj y);
template<class ExecutionPolicy, __in_object InObj, __out_object OutObj>
void copy(ExecutionPolicy&& exec, InObj x, OutObj y);
// sumar elemento por elemento
template<__in_object InObj1, __in_object InObj2, __out_object OutObj>
void add(InObj1 x, InObj2 y, OutObj z);
template<class ExecutionPolicy,
         __in_object InObj1, __in_object InObj2, __out_object OutObj>
void add(ExecutionPolicy&& exec, InObj1 x, InObj2 y, OutObj z);
// producto punto no conjugado de dos vectores
template<__in_vector InVec1, __in_vector InVec2, class Scalar>
Scalar dot(InVec1 v1, InVec2 v2, Scalar init);
template<class ExecutionPolicy,
         __in_vector InVec1, __in_vector InVec2, class Scalar>
Scalar dot(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2, Scalar init);
template<__in_vector InVec1, __in_vector InVec2>
auto dot(InVec1 v1, InVec2 v2) -> /* ver descripción */;
template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2>
auto dot(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2) -> /* ver descripción */;
// producto punto conjugado de dos vectores
template<__in_vector InVec1, __in_vector InVec2, class Scalar>
Scalar dotc(InVec1 v1, InVec2 v2, Scalar init);
template<class ExecutionPolicy,
         __in_vector InVec1, __in_vector InVec2, class Scalar>
Scalar dotc(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2, Scalar init);
template<__in_vector InVec1, __in_vector InVec2>
auto dotc(InVec1 v1, InVec2 v2) -> /* ver descripción */;
template<class ExecutionPolicy, __in_vector InVec1, __in_vector InVec2>
auto dotc(ExecutionPolicy&& exec, InVec1 v1, InVec2 v2) -> /* ver descripción */;
// Suma escalada de cuadrados de los elementos de un vector
template<class Scalar>
struct sum_of_squares_result {
  Scalar scaling_factor;
  Scalar scaled_sum_of_squares;
};
template<__in_vector InVec, class Scalar>
sum_of_squares_result<Scalar>
vector_sum_of_squares(InVec v, sum_of_squares_result<Scalar> init);
template<class ExecutionPolicy, __in_vector InVec, class Scalar>
sum_of_squares_result<Scalar>
vector_sum_of_squares(ExecutionPolicy&& exec, InVec v,
                      sum_of_squares_result<Scalar> init);
// Norma euclidiana de un vector
template<__in_vector InVec, class Scalar>
Scalar vector_two_norm(InVec v, Scalar init);
template<class ExecutionPolicy, __in_vector InVec, class Scalar>
Scalar vector_two_norm(ExecutionPolicy&& exec, InVec v, Scalar init);
template<__in_vector InVec>
auto vector_two_norm(InVec v) -> /* ver descripción */;
template<class ExecutionPolicy, __in_vector InVec>
auto vector_two_norm(ExecutionPolicy&& exec, InVec v) -> /* ver descripción */;
// suma de valores absolutos de elementos del vector
template<__in_vector InVec, class Scalar>
Scalar vector_abs_sum(InVec v, Scalar init);
template<class ExecutionPolicy, __in_vector InVec, class Scalar>
Scalar vector_abs_sum(ExecutionPolicy&& exec, InVec v, Scalar init);
template<__in_vector InVec>
auto vector_abs_sum(InVec v) -> /* ver descripción */;
template<class ExecutionPolicy, __in_vector InVec>
auto vector_abs_sum(ExecutionPolicy&& exec, InVec v) -> /* ver descripción */;
// índice del valor absoluto máximo de los elementos del vector
template<__in_vector InVec>
typename InVec::extents_type vector_idx_abs_max(InVec v);
template<class ExecutionPolicy, __in_vector InVec>
typename InVec::extents_type vector_idx_abs_max(ExecutionPolicy&& exec, InVec v);
// Norma de Frobenius de una matriz
template<__in_matrix InMat, class Scalar>
Scalar matrix_frob_norm(InMat A, Scalar init);
template<class ExecutionPolicy, __in_matrix InMat, class Scalar>
Scalar matrix_frob_norm(ExecutionPolicy&& exec,
                        InMat A, Scalar init);
template<__in_matrix InMat>
auto matrix_frob_norm(InMat A) -> /* ver descripción */;
template<class ExecutionPolicy, __in_matrix InMat>
auto matrix_frob_norm(ExecutionPolicy&& exec, InMat A) -> /* ver descripción */;
// Norma uno de una matriz
template<__in_matrix InMat, class Scalar>
Scalar matrix_one_norm(InMat A, Scalar init);
template<class ExecutionPolicy, __in_matrix InMat, class Scalar>
Scalar matrix_one_norm(ExecutionPolicy&& exec,
                       InMat A, Scalar init);
template<__in_matrix InMat>
auto matrix_one_norm(InMat A) -> /* ver descripción */;
template<class ExecutionPolicy, __in_matrix InMat>
auto matrix_one_norm(ExecutionPolicy&& exec, InMat A) -> /* ver descripción */;
// Norma infinito de una matriz
template<__in_matrix InMat, class Scalar>
Scalar matrix_inf_norm(InMat A, Scalar init);
template<class ExecutionPolicy, __in_matrix InMat, class Scalar>
Scalar matrix_inf_norm(ExecutionPolicy&& exec,
                       InMat A, Scalar init);
template<__in_matrix InMat>
auto matrix_inf_norm(InMat A) -> /* ver descripción */;
template<class ExecutionPolicy, __in_matrix InMat>
auto matrix_inf_norm(ExecutionPolicy&& exec, InMat A) -> /* ver descripción */;
// producto general matriz-vector
template<__in_matrix InMat, __in_vector InVec, __out_vector OutVec>
void matrix_vector_product(InMat A, InVec x, OutVec y);
template<class ExecutionPolicy,
         __in_matrix InMat, __in_vector InVec, __out_vector OutVec>
void matrix_vector_product(ExecutionPolicy&& exec,
                           InMat A, InVec x, OutVec y);
template<__in_matrix InMat, __in_vector InVec1,
         __in_vector InVec2, __out_vector OutVec>
void matrix_vector_product(InMat A, InVec1 x, InVec2 y, OutVec z);
template<class ExecutionPolicy,
         __in_matrix InMat, __in_vector InVec1,
         __in_vector InVec2, __out_vector OutVec>
void matrix_vector_product(ExecutionPolicy&& exec,
                           InMat A, InVec1 x, InVec2 y, OutVec z);
// producto matriz-vector simétrico
template<__in_matrix InMat, class Triangle,
         __in_vector InVec, __out_vector OutVec>
void symmetric_matrix_vector_product(InMat A, Triangle t,
                                     InVec x, OutVec y);
template<class ExecutionPolicy,
         __in_matrix InMat, class Triangle,
         __in_vector InVec, __out_vector OutVec>
void symmetric_matrix_vector_product(ExecutionPolicy&& exec,
                                     InMat A, Triangle t,
                                     InVec x, OutVec y);
template<__in_matrix InMat, class Triangle,
         __in_vector InVec1, __in_vector InVec2,
         __out_vector OutVec>
void symmetric_matrix_vector_product(InMat A, Triangle t,
                                     InVec1 x, InVec2 y, OutVec z);
template<class ExecutionPolicy,
         __in_matrix InMat, class Triangle,
         __in_vector InVec1, __in_vector InVec2,
         __out_vector OutVec>
void symmetric_matrix_vector_product(ExecutionPolicy&& exec,
                                     InMat A, Triangle t,
                                     InVec1 x, InVec2 y, OutVec z);
// Producto matriz-vector hermítico
template<__in_matrix InMat, class Triangle,
         __in_vector InVec, __out_vector OutVec>
void hermitian_matrix_vector_product(InMat A, Triangle t,
                                     InVec x, OutVec y);
template<class ExecutionPolicy,
         __in_matrix InMat, class Triangle,
         __in_vector InVec, __out_vector OutVec>
void hermitian_matrix_vector_product(ExecutionPolicy&& exec,
                                     InMat A, Triangle t,
                                     InVec x, OutVec y);
template<__in_matrix InMat, class Triangle,
         __in_vector InVec1, __in_vector InVec2,
         __out_vector OutVec>
void hermitian_matrix_vector_product(InMat A, Triangle t,
                                     InVec1 x, InVec2 y, OutVec z);
template<class ExecutionPolicy,
         __in_matrix InMat, class Triangle,
         __in_vector InVec1, __in_vector InVec2,
         __out_vector OutVec>
void hermitian_matrix_vector_product(ExecutionPolicy&& exec,
                                     InMat A, Triangle t,
                                     InVec1 x, InVec2 y, OutVec z);
// Producto matriz-vector triangular
// Sobrescribiendo producto matriz-vector triangular
template<__in_matrix InMat, class Triangle, class DiagonalStorage,
         __in_vector InVec, __out_vector OutVec>
void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d,
                                      InVec x, OutVec y);
template<class ExecutionPolicy,
         __in_matrix InMat, class Triangle, class DiagonalStorage,
         __in_vector InVec, __out_vector OutVec>
void triangular_matrix_vector_product(ExecutionPolicy&& exec,
                                      InMat A, Triangle t, DiagonalStorage d,
                                      InVec x, OutVec y);
// Producto matriz-vector triangular in situ
template<__in_matrix InMat, class Triangle, class DiagonalStorage,
         __inout_vector InOutVec>
void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d,
                                      InOutVec y);
template<class ExecutionPolicy,
         __in_matrix InMat, class Triangle, class DiagonalStorage,
         __inout_vector InOutVec>
void triangular_matrix_vector_product(ExecutionPolicy&& exec,
                                      InMat A, Triangle t, DiagonalStorage d,
                                      InOutVec y);
// Actualización del producto matriz-vector triangular
template<__in_matrix InMat, class Triangle, class DiagonalStorage,
         __in_vector InVec1, __in_vector InVec2,
         __out_vector OutVec>
void triangular_matrix_vector_product(InMat A, Triangle t, DiagonalStorage d,
                                      InVec1 x, InVec2 y, OutVec z);
template<class ExecutionPolicy,
         __in_matrix InMat, class Triangle, class DiagonalStorage,
         __in_vector InVec1, __in_vector InVec2,
         __out_vector OutVec>
void triangular_matrix_vector_product(ExecutionPolicy&& exec,
                                      InMat A, Triangle t, DiagonalStorage d,
                                      InVec1 x, InVec2 y, OutVec z);
// Resolver un sistema lineal triangular, no in situ
template<__in_matrix InMat, class Triangle, class DiagonalStorage,
         __in_vector InVec, __out_vector OutVec, class BinaryDivideOp>
void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d,
                                    InVec b, OutVec x, BinaryDivideOp divide);
template<class ExecutionPolicy,
         __in_matrix InMat, class Triangle, class DiagonalStorage,
         __in_vector InVec, __out_vector OutVec, class BinaryDivideOp>
void triangular_matrix_vector_solve(ExecutionPolicy&& exec,
                                    InMat A, Triangle t, DiagonalStorage d,
                                    InVec b, OutVec x, BinaryDivideOp divide);
template<__in_matrix InMat, class Triangle, class DiagonalStorage,
         __in_vector InVec, __out_vector OutVec>
void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d,
                                    InVec b, OutVec x);
template<class ExecutionPolicy,
         __in_matrix InMat, class Triangle, class DiagonalStorage,
         __in_vector InVec, __out_vector OutVec>
void triangular_matrix_vector_solve(ExecutionPolicy&& exec,
                                    InMat A, Triangle t, DiagonalStorage d,
                                    InVec b, OutVec x);
// Resolver un sistema lineal triangular, en el lugar
template<__in_matrix InMat, class Triangle, class DiagonalStorage,
         __inout_vector InOutVec, class BinaryDivideOp>
void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d,
                                    InOutVec b, BinaryDivideOp divide);
template<class ExecutionPolicy,
         __in_matrix InMat, class Triangle, class DiagonalStorage,
         __inout_vector InOutVec, class BinaryDivideOp>
void triangular_matrix_vector_solve(ExecutionPolicy&& exec,
                                    InMat A, Triangle t, DiagonalStorage d,
                                    InOutVec b, BinaryDivideOp divide);
template<__in_matrix InMat, class Triangle, class DiagonalStorage,
         __inout_vector InOutVec>
void triangular_matrix_vector_solve(InMat A, Triangle t, DiagonalStorage d,
                                    InOutVec b);
template<class ExecutionPolicy,
         __in_matrix InMat, class Triangle, class DiagonalStorage,
         __inout_vector InOutVec>
void triangular_matrix_vector_solve(ExecutionPolicy&& exec,
                                    InMat A, Triangle t, DiagonalStorage d,
                                    InOutVec b);
// actualización de matriz de rango 1 no conjugada
template<__in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat>
void matrix_rank_1_update(InVec1 x, InVec2 y, InOutMat A);
template<class ExecutionPolicy,
         __in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat>
void matrix_rank_1_update(ExecutionPolicy&& exec,
                          InVec1 x, InVec2 y, InOutMat A);
// actualización de matriz de rango 1 conjugada
template<__in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat>
void matrix_rank_1_update_c(InVec1 x, InVec2 y, InOutMat A);
template<class ExecutionPolicy, 
         __in_vector InVec1, __in_vector InVec2, __inout_matrix InOutMat>
void matrix_rank_1_update_c(ExecutionPolicy&& exec,
                            InVec1 x, InVec2 y, InOutMat A);
// actualización simétrica de matriz de rango 1
template<__in_vector InVec, __possibly_packed_inout_matrix InOutMat,
         class Triangle>
void symmetric_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
template<class ExecutionPolicy,
         __in_vector InVec, __possibly_packed_inout_matrix InOutMat,
         class Triangle>
void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec,
                                    InVec x, InOutMat A, Triangle t);
template<class Scalar, __in_vector InVec,
         __possibly_packed_inout_matrix InOutMat, class Triangle>
void symmetric_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A,
                                    Triangle t);
template<class ExecutionPolicy,
         class Scalar, __in_vector InVec,
         __possibly_packed_inout_matrix InOutMat, class Triangle>
void symmetric_matrix_rank_1_update(ExecutionPolicy&& exec,
                                    Scalar alpha, InVec x, InOutMat A,
                                    Triangle t);
// Actualización de matriz Hermitiana de rango 1
template<__in_vector InVec, __possibly_packed_inout_matrix InOutMat,
         class Triangle>
void hermitian_matrix_rank_1_update(InVec x, InOutMat A, Triangle t);
template<class ExecutionPolicy,
         __in_vector InVec, __possibly_packed_inout_matrix InOutMat,
         class Triangle>
void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec,
                                    InVec x, InOutMat A, Triangle t);
template<class Scalar, __in_vector InVec,
         __possibly_packed_inout_matrix InOutMat,
         class Triangle>
void hermitian_matrix_rank_1_update(Scalar alpha, InVec x, InOutMat A,
                                    Triangle t);
template<class ExecutionPolicy,
         class Scalar, __in_vector InVec,
         __possibly_packed_inout_matrix InOutMat,
         class Triangle>
void hermitian_matrix_rank_1_update(ExecutionPolicy&& exec,
                                    Scalar alpha, InVec x, InOutMat A,
                                    Triangle t);
// actualización de matriz simétrica de rango 2
template<__in_vector InVec1, __in_vector InVec2,
         __possibly_packed_inout_matrix InOutMat,
         class Triangle>
void symmetric_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A,
                                    Triangle t);
template<class ExecutionPolicy,
         __in_vector InVec1, __in_vector InVec2,
         __possibly_packed_inout_matrix InOutMat,
         class Triangle>
void symmetric_matrix_rank_2_update(ExecutionPolicy&& exec,
                                    InVec1 x, InVec2 y, InOutMat A,
                                    Triangle t);
// Actualización de matriz hermítica de rango 2
template<__in_vector InVec1, __in_vector InVec2,
         __possibly_packed_inout_matrix InOutMat,
         class Triangle>
void hermitian_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A,
                                    Triangle t);
template<class ExecutionPolicy,
         __in_vector InVec1, __in_vector InVec2,
         __possibly_packed_inout_matrix InOutMat,
         class Triangle>
void hermitian_matrix_rank_2_update(ExecutionPolicy&& exec,
                                    InVec1 x, InVec2 y, InOutMat A,
                                    Triangle t);
// producto general matriz-matriz
template<__in_matrix InMat1, __in_matrix InMat2, __out_matrix OutMat>
void matrix_product(InMat1 A, InMat2 B, OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, __in_matrix InMat2, __out_matrix OutMat>
void matrix_product(ExecutionPolicy&& exec, InMat1 A, InMat2 B, OutMat C);
template<__in_matrix InMat1, __in_matrix InMat2, __in_matrix InMat3,
         __out_matrix OutMat>
void matrix_product(InMat1 A, InMat2 B, InMat3 E, OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, __in_matrix InMat2, __in_matrix InMat3,
         __out_matrix OutMat>
void matrix_product(ExecutionPolicy&& exec,
                    InMat1 A, InMat2 B, InMat3 E, OutMat C);
// producto matriz-matriz simétrico
// sobrescritura del producto izquierdo matriz-matriz simétrico
template<__in_matrix InMat1, class Triangle,
         __in_matrix InMat2, __out_matrix OutMat>
void symmetric_matrix_product(InMat1 A, Triangle t,
                              InMat2 B, OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle,
         __in_matrix InMat2, __out_matrix OutMat>
void symmetric_matrix_product(ExecutionPolicy&& exec,
                              InMat1 A, Triangle t,
                              InMat2 B, OutMat C);
// sobrescribiendo el producto derecho matriz-matriz simétrico
template<__in_matrix InMat1, __in_matrix InMat2,
         class Triangle, __out_matrix OutMat>
void symmetric_matrix_product(InMat1 B, InMat2 A, Triangle t,
                              OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, __in_matrix InMat2,
         class Triangle, __out_matrix OutMat>
void symmetric_matrix_product(ExecutionPolicy&& exec,
                              InMat1 B, InMat2 A, Triangle t,
                              OutMat C);
// actualización del producto izquierdo matriz-matriz simétrico
template<__in_matrix InMat1, class Triangle,
         __in_matrix InMat2, __in_matrix InMat3,
         __out_matrix OutMat>
void symmetric_matrix_product(InMat1 A, Triangle t,
                              InMat2 B, InMat3 E,
                              OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle,
         __in_matrix InMat2, __in_matrix InMat3,
         __out_matrix OutMat>
void symmetric_matrix_product(ExecutionPolicy&& exec,
                              InMat1 A, Triangle t,
                              InMat2 B, InMat3 E,
                              OutMat C);
// actualizando producto derecho matriz-matriz simétrica
template<__in_matrix InMat1, __in_matrix InMat2, class Triangle,
         __in_matrix InMat3, __out_matrix OutMat>
void symmetric_matrix_product(InMat1 B, InMat2 A, Triangle t,
                              InMat3 E, OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, __in_matrix InMat2, class Triangle,
         __in_matrix InMat3, __out_matrix OutMat>
void symmetric_matrix_product(ExecutionPolicy&& exec,
                              InMat1 B, InMat2 A, Triangle t,
                              InMat3 E, OutMat C);
// Producto matriz-matriz hermítico
// sobrescribiendo el producto izquierdo matriz-matriz hermítico
template<__in_matrix InMat1, class Triangle,
         __in_matrix InMat2, __out_matrix OutMat>
void hermitian_matrix_product(InMat1 A, Triangle t,
                              InMat2 B, OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle,
         __in_matrix InMat2, __out_matrix OutMat>
void hermitian_matrix_product(ExecutionPolicy&& exec,
                              InMat1 A, Triangle t,
                              InMat2 B, OutMat C);
// sobrescribiendo el producto derecho matriz-matriz hermítico
template<__in_matrix InMat1, __in_matrix InMat2,
         class Triangle, __out_matrix OutMat>
void hermitian_matrix_product(InMat1 B, InMat2 A, Triangle t,
                              OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, __in_matrix InMat2,
         class Triangle, __out_matrix OutMat>
void hermitian_matrix_product(ExecutionPolicy&& exec,
                              InMat1 B, InMat2 A, Triangle t,
                              OutMat C);
// actualizando el producto izquierdo matriz-matriz hermítico
template<__in_matrix InMat1, class Triangle,
         __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat>
void hermitian_matrix_product(InMat1 A, Triangle t,
                              InMat2 B, InMat3 E, OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle,
         __in_matrix InMat2, __in_matrix InMat3, __out_matrix OutMat>
void hermitian_matrix_product(ExecutionPolicy&& exec,
                              InMat1 A, Triangle t,
                              InMat2 B, InMat3 E, OutMat C);
// actualizando el producto derecho matriz-matriz hermítico
template<__in_matrix InMat1, __in_matrix InMat2, class Triangle,
         __in_matrix InMat3, __out_matrix OutMat>
void hermitian_matrix_product(InMat1 B, InMat2 A, Triangle t,
                              InMat3 E, OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, __in_matrix InMat2, class Triangle,
         __in_matrix InMat3, __out_matrix OutMat>
void hermitian_matrix_product(ExecutionPolicy&& exec,
                              InMat1 B, InMat2 A, Triangle t,
                              InMat3 E, OutMat C);
// producto matriz-matriz triangular
// sobrescribiendo producto matriz-matriz triangular izquierdo
template<__in_matrix InMat1, class Triangle, class DiagonalStorage,
         __in_matrix InMat2, __out_matrix OutMat>
void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d,
                               InMat2 B, OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle, class DiagonalStorage,
         __in_matrix InMat2, __out_matrix OutMat>
void triangular_matrix_product(ExecutionPolicy&& exec,
                               InMat1 A, Triangle t, DiagonalStorage d,
                               InMat2 B, OutMat C);
template<__in_matrix InMat1, class Triangle, class DiagonalStorage,
         __inout_matrix InOutMat>
void triangular_matrix_left_product(InMat1 A, Triangle t, DiagonalStorage d,
                                    InOutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle, class DiagonalStorage,
         __inout_matrix InOutMat>
void triangular_matrix_left_product(ExecutionPolicy&& exec,
                                    InMat1 A, Triangle t, DiagonalStorage d,
                                    InOutMat C);
// sobrescribiendo producto matriz-matriz triangular derecho
template<__in_matrix InMat1, __in_matrix InMat2,
         class Triangle, class DiagonalStorage,
         __out_matrix OutMat>
void triangular_matrix_product(InMat1 B, InMat2 A,
                               Triangle t, DiagonalStorage d,
                               OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, __in_matrix InMat2,
         class Triangle, class DiagonalStorage,
         __out_matrix OutMat>
void triangular_matrix_product(ExecutionPolicy&& exec,
                               InMat1 B, InMat2 A,
                               Triangle t, DiagonalStorage d,
                               OutMat C);
template<__in_matrix InMat1, class Triangle, class DiagonalStorage,
         __inout_matrix InOutMat>
void triangular_matrix_right_product(InMat1 A, Triangle t, DiagonalStorage d,
                                     InOutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle, class DiagonalStorage,
         __inout_matrix InOutMat>
void triangular_matrix_right_product(ExecutionPolicy&& exec,
                                     InMat1 A, Triangle t, DiagonalStorage d,
                                     InOutMat C);
// actualización del producto matriz-matriz triangular izquierdo
template<__in_matrix InMat1, class Triangle, class DiagonalStorage,
         __in_matrix InMat2, __in_matrix InMat3,
         __out_matrix OutMat>
void triangular_matrix_product(InMat1 A, Triangle t, DiagonalStorage d,
                               InMat2 B, InMat3 E, OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle, class DiagonalStorage,
         __in_matrix InMat2, __in_matrix InMat3,
         __out_matrix OutMat>
void triangular_matrix_product(ExecutionPolicy&& exec,
                               InMat1 A, Triangle t, DiagonalStorage d,
                               InMat2 B, InMat3 E, OutMat C);
// actualizando producto derecho matriz-matriz triangular
template<__in_matrix InMat1, __in_matrix InMat2,
         class Triangle, class DiagonalStorage,
         __in_matrix InMat3, __out_matrix OutMat>
void triangular_matrix_product(InMat1 B, InMat2 A,
                               Triangle t, DiagonalStorage d,
                               InMat3 E, OutMat C);
template<class ExecutionPolicy,
         __in_matrix InMat1, __in_matrix InMat2,
         class Triangle, class DiagonalStorage,
         __in_matrix InMat3, __out_matrix OutMat>
void triangular_matrix_product(ExecutionPolicy&& exec,
                               InMat1 B, InMat2 A,
                               Triangle t, DiagonalStorage d,
                               InMat3 E, OutMat C);
// actualización de matriz simétrica de rango-k
template<class Scalar, __in_matrix InMat1,
         __possibly_packed_inout_matrix InOutMat, class Triangle>
void symmetric_matrix_rank_k_update(Scalar alpha, InMat1 A, InOutMat C,
                                    Triangle t);
template<class Scalar,
         class ExecutionPolicy,
         ___in_matrix InMat1,
         __possibly_packed_inout_matrix InOutMat, class Triangle>
void symmetric_matrix_rank_k_update(ExecutionPolicy&& exec,
                                    Scalar alpha, InMat1 A, InOutMat C,
                                    Triangle t);
template<__in_matrix InMat1,
         __possibly_packed_inout_matrix InOutMat, class Triangle>
void symmetric_matrix_rank_k_update(InMat1 A, InOutMat C, Triangle t);
template<class ExecutionPolicy,
         __in_matrix InMat1,
         __possibly_packed_inout_matrix InOutMat, class Triangle>
void symmetric_matrix_rank_k_update(ExecutionPolicy&& exec,
                                    InMat1 A, InOutMat C, Triangle t);
// actualización de matriz hermítica de rango k
template<class Scalar, __in_matrix InMat1,
         __possibly_packed_inout_matrix InOutMat, class Triangle>
void hermitian_matrix_rank_k_update(Scalar alpha, InMat1 A, InOutMat C,
                                    Triangle t);
template<class ExecutionPolicy,
         class Scalar, __in_matrix InMat1,
         __possibly_packed_inout_matrix InOutMat, class Triangle
void hermitian_matrix_rank_k_update(ExecutionPolicy&& exec,
                                    Scalar alpha, InMat1 A, InOutMat C,
                                    Triangle t);
template<__in_matrix InMat1,
         __possibly_packed_inout_matrix InOutMat, class Triangle>
void hermitian_matrix_rank_k_update(InMat1 A, InOutMat C, Triangle t);
template<class ExecutionPolicy,
         __in_matrix InMat1,
         __possibly_packed_inout_matrix InOutMat, class Triangle>
void hermitian_matrix_rank_k_update(ExecutionPolicy&& exec,
                                    InMat1 A, InOutMat C, Triangle t);
// actualización de matriz simétrica de rango-2k
template<__in_matrix InMat1, __in_matrix InMat2,
         __possibly_packed_inout_matrix InOutMat, class Triangle>
void symmetric_matrix_rank_2k_update(InMat1 A, InMat2 B, InOutMat C,
                                     Triangle t);
template<class ExecutionPolicy,
         __in_matrix InMat1, __in_matrix InMat2,
         __possibly_packed_inout_matrix InOutMat, class Triangle>
void symmetric_matrix_rank_2k_update(ExecutionPolicy&& exec,
                                     InMat1 A, InMat2 B, InOutMat C,
                                     Triangle t);
// actualización de matriz hermítica de rango 2k
template<__in_matrix InMat1, __in_matrix InMat2,
         __possibly_packed_inout_matrix InOutMat, class Triangle>
void hermitian_matrix_rank_2k_update(InMat1 A, InMat2 B, InOutMat C,
                                     Triangle t);
template<class ExecutionPolicy,
         __in_matrix InMat1, __in_matrix InMat2,
         __possibly_packed_inout_matrix InOutMat, class Triangle>
void hermitian_matrix_rank_2k_update(ExecutionPolicy&& exec,
                                     InMat1 A, InMat2 B, InOutMat C,
                                     Triangle t);
// resolver múltiples sistemas lineales triangulares
// con matriz triangular a la izquierda
template<__in_matrix InMat1, class Triangle, class DiagonalStorage,
         __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp>
void triangular_matrix_matrix_left_solve(InMat1 A,
                                         Triangle t, DiagonalStorage d,
                                         InMat2 B, OutMat X,
                                         BinaryDivideOp divide);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle, class DiagonalStorage,
         __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp>
void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec,
                                         InMat1 A,
                                         Triangle t, DiagonalStorage d,
                                         InMat2 B, OutMat X,
                                         BinaryDivideOp divide);
template<__in_matrix InMat1, class Triangle, class DiagonalStorage,
         __inout_matrix InOutMat, class BinaryDivideOp>
void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d,
                                         InOutMat B, BinaryDivideOp divide);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle, class DiagonalStorage,
         __inout_matrix InOutMat, class BinaryDivideOp>
void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec,
                                         InMat1 A, Triangle t, DiagonalStorage d,
                                         InOutMat B, BinaryDivideOp divide);
template<__in_matrix InMat1, class Triangle, class DiagonalStorage,
         __in_matrix InMat2, __out_matrix OutMat>
void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d,
                                         InMat2 B, OutMat X);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle, class DiagonalStorage,
         __in_matrix InMat2, __out_matrix OutMat>
void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec,
                                         InMat1 A, Triangle t, DiagonalStorage d,
                                         InMat2 B, OutMat X);
template<__in_matrix InMat1, class Triangle, class DiagonalStorage,
         __inout_matrix InOutMat>
void triangular_matrix_matrix_left_solve(InMat1 A, Triangle t, DiagonalStorage d,
                                         InOutMat B);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle, class DiagonalStorage,
         __inout_matrix InOutMat>
void triangular_matrix_matrix_left_solve(ExecutionPolicy&& exec,
                                         InMat1 A, Triangle t, DiagonalStorage d,
                                         InOutMat B);
// resolver múltiples sistemas lineales triangulares
// con matriz triangular a la derecha
template<__in_matrix InMat1, class Triangle, class DiagonalStorage,
         __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp>
void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d,
                                          InMat2 B, OutMat X, BinaryDivideOp divide);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle, class DiagonalStorage,
         __in_matrix InMat2, __out_matrix OutMat, class BinaryDivideOp>
void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec,
                                          InMat1 A, Triangle t, DiagonalStorage d,
                                          InMat2 B, OutMat X, BinaryDivideOp divide);
template<__in_matrix InMat1, class Triangle, class DiagonalStorage,
         __inout_matrix InOutMat, class BinaryDivideOp>
void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d,
                                          InOutMat B, BinaryDivideOp divide);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle, class DiagonalStorage,
         __inout_matrix InOutMat, class BinaryDivideOp>
void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec,
                                          InMat1 A, Triangle t, DiagonalStorage d,
                                          InOutMat B, BinaryDivideOp divide));
template<__in_matrix InMat1, class Triangle, class DiagonalStorage,
         __in_matrix InMat2, __out_matrix OutMat>
void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d,
                                          InMat2 B, OutMat X);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle, class DiagonalStorage,
         __in_matrix InMat2, __out_matrix OutMat>
void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec,
                                          InMat1 A, Triangle t, DiagonalStorage d,
                                          InMat2 B, OutMat X);
template<__in_matrix InMat1, class Triangle, class DiagonalStorage,
         __inout_matrix InOutMat>
void triangular_matrix_matrix_right_solve(InMat1 A, Triangle t, DiagonalStorage d,
                                          InOutMat B);
template<class ExecutionPolicy,
         __in_matrix InMat1, class Triangle, class DiagonalStorage,
         __inout_matrix InOutMat>
void triangular_matrix_matrix_right_solve(ExecutionPolicy&& exec,
                                          InMat1 A, Triangle t, DiagonalStorage d,
                                          InOutMat B);
}

Etiquetas

namespace std::linalg {
  struct column_major_t {
    explicit column_major_t() = default;
  };
  inline constexpr column_major_t column_major = { };
  struct row_major_t {
    explicit row_major_t() = default;
  };
  inline constexpr row_major_t row_major = { };
  struct upper_triangle_t {
    explicit upper_triangle_t() = default;
  };
  inline constexpr upper_triangle_t upper_triangle = { };
  struct lower_triangle_t {
    explicit lower_triangle_t() = default;
  };
  inline constexpr lower_triangle_t lower_triangle = { };
  struct implicit_unit_diagonal_t {
    explicit implicit_unit_diagonal_t() = default;
  };
  inline constexpr implicit_unit_diagonal_t implicit_unit_diagonal = { };
  struct explicit_diagonal_t {
    explicit explicit_diagonal_t() = default;
  };
  inline constexpr explicit_diagonal_t explicit_diagonal = { };
}

Plantilla de clase std::linalg::layout_blas_packed

namespace std::linalg {
  template<class Triangle, class StorageOrder>
  class layout_blas_packed {
   public:
    using triangle_type = Triangle;
    using storage_order_type = StorageOrder;
    template<class Extents>
    struct mapping {
     public:
      using extents_type = Extents;
      using index_type = typename extents_type::index_type;
      using size_type = typename extents_type::size_type;
      using rank_type = typename extents_type::rank_type;
      using layout_type = layout_blas_packed<Triangle, StorageOrder>;
     private:
      Extents __the_extents{}; // solo para exposición
     public:
      constexpr mapping() noexcept = default;
      constexpr mapping(const mapping&) noexcept = default;
      constexpr mapping(const extents_type& e) noexcept;
      template<class OtherExtents>
      constexpr explicit(!is_convertible_v<OtherExtents, extents_type>)
      mapping(const mapping<OtherExtents>& other) noexcept;
      constexpr mapping& operator=(const mapping&) noexcept = default;
      constexpr extents_type extents() const noexcept { return __the_extents; }
      constexpr size_type required_span_size() const noexcept;
      template<class Index0, class Index1>
      constexpr index_type operator() (Index0 ind0, Index1 ind1) const noexcept;
      static constexpr bool is_always_unique() {
        return (extents_type::static_extent(0) != dynamic_extent &&
                extents_type::static_extent(0) < 2) ||
               (extents_type::static_extent(1) != dynamic_extent &&
                extents_type::static_extent(1) < 2);
      }
      static constexpr bool is_always_exhaustive() { return true; }
      static constexpr bool is_always_strided() {
        return is_always_unique();
      }
      constexpr bool is_unique() const noexcept {
        return __the_extents.extent(0) < 2;
      }
      constexpr bool is_exhaustive() const noexcept { return true; }
      constexpr bool is_strided() const noexcept {
        return __the_extents.extent(0) < 2;
      }
      constexpr index_type stride(rank_type) const noexcept;
      template<class OtherExtents>
      friend constexpr bool
      operator==(const mapping&, const mapping<OtherExtents>&) noexcept;
    };
  };
}

Plantilla de clase std::linalg::scaled_accessor

namespace std::linalg {
  template<class ScalingFactor, class NestedAccessor>
  class scaled_accessor {
   public:
    using element_type = 
      add_const_t<decltype(declval<ScalingFactor>() * 
                           declval<NestedAccessor::element_type>())>;
    using reference = remove_const_t<element_type>;
    using data_handle_type = NestedAccessor::data_handle_type;
    using offset_policy = scaled_accessor<ScalingFactor, NestedAccessor::offset_policy>;
    constexpr scaled_accessor() = default;
    template<class OtherNestedAccessor>
      explicit(!is_convertible_v<OtherNestedAccessor, NestedAccessor>)
    constexpr scaled_accessor(const scaled_accessor<ScalingFactor, OtherNestedAccessor>&);
    constexpr scaled_accessor(const ScalingFactor& s, const Accessor& a);
    constexpr reference access(data_handle_type p, size_t i) const noexcept;
    constexpr 
      offset_policy::data_handle_type offset(data_handle_type p, size_t i) const noexcept;
    constexpr const ScalingFactor& scaling_factor() const noexcept 
      { return __scaling_factor; } 
    constexpr const NestedAccessor& nested_accessor() const noexcept
      { return __nested_accessor; }
   private:
    ScalingFactor __scaling_factor; // solo para exposición
    NestedAccessor __nested_accessor; // solo para exposición
  };
}

Plantilla de clase std::linalg::conjugated_accessor

namespace std::linalg {
  template<class NestedAccessor>
  class conjugated_accessor {
   private:
    NestedAccessor __nested_accessor; // solo para exposición
   public:
    using element_type =
      add_const_t<decltype(/*conj-si-es-necesario*/(declval<NestedAccessor::element_type>()))>;
    using reference = remove_const_t<element_type>;
    using data_handle_type = typename NestedAccessor::data_handle_type;
    using offset_policy = conjugated_accessor<NestedAccessor::offset_policy>;
    constexpr conjugated_accessor() = default;
    template<class OtherNestedAccessor>
      explicit(!is_convertible_v<OtherNestedAccessor, NestedAccessor>)
      constexpr conjugated_accessor(const conjugated_accessor<OtherNestedAccessor>& other);
    constexpr reference access(data_handle_type p, size_t i) const;
    constexpr typename offset_policy::data_handle_type
      offset(data_handle_type p, size_t i) const;
    constexpr const NestedAccessor& nested_accessor() const noexcept
      { return __nested_accessor; }
  };
}

Plantilla de clase std::linalg::layout_transpose

namespace std::linalg {
  template<class InputExtents>
  using __transpose_extents_t = /* ver descripción */; // solo para exposición
  template<class Layout>
  class layout_transpose {
   public:
    using nested_layout_type = Layout;
    template<class Extents>
    struct mapping {
     private:
      using __nested_mapping_type =
        typename Layout::template mapping<
          __transpose_extents_t<Extents>>;    // solo para exposición
      __nested_mapping_type __nested_mapping; // solo para exposición
        extents_type __extents;               // solo para exposición
     public:
      using extents_type = Extents;
      using index_type = typename extents_type::index_type;
      using size_type = typename extents_type::size_type;
      using rank_type = typename extents_type::rank_type;
      using layout_type = layout_transpose;
      constexpr explicit mapping(const __nested_mapping_type& map);
      constexpr const extents_type& extents() const noexcept { return __extents; }
      constexpr index_type required_span_size() const
        { return __nested_mapping.required_span_size(); }
      template<class Index0, class Index1>
        constexpr index_type operator()(Index0 ind0, Index1 ind1) const
        { return __nested_mapping(ind1, ind0); }
      constexpr const __nested_mapping_type& nested_mapping() const noexcept
        { return __nested_mapping; }
      static constexpr bool is_always_unique() noexcept
        { return __nested_mapping_type::is_always_unique(); }
      static constexpr bool is_always_exhaustive() noexcept
        { return __nested_mapping_type::is_always_exhaustive(); }
      static constexpr bool is_always_strided() noexcept
        { return __nested_mapping_type::is_always_strided(); }
      constexpr bool is_unique() const 
        { return __nested_mapping.is_unique(); }
      constexpr bool is_exhaustive() const 
        { return __nested_mapping.is_exhaustive(); }
      constexpr bool is_strided() const 
        { return __nested_mapping.is_strided(); }
      constexpr index_type stride(size_t r) const;
      template<class OtherExtents>
      friend constexpr bool
        operator==(const mapping& x, const mapping<OtherExtents>& y);
    };
  };
}

Conceptos y rasgos auxiliares

namespace std::linalg {
  template<class T>
  struct __is_mdspan : false_type {}; // exposición solamente
  template<class ElementType, class Extents, class Layout, class Accessor>
  struct __is_mdspan<mdspan<ElementType, Extents, Layout, Accessor>>
  : true_type {}; // exposición solamente
  template<class T>
  concept __in_vector = // exposición solamente
    __is_mdspan<T>::valor &&
    T::rank() == 1;
  template<class T>
  concept __out_vector = // exposición solamente
    __is_mdspan<T>::valor &&
    T::rank() == 1 &&
    is_assignable_v<typename T::referencia, typename T::element_type> &&
    T::is_always_unique();
  template<class T>
  concept __inout_vector = // exposición solamente
    __is_mdspan<T>::valor &&
    T::rank() == 1 &&
    is_assignable_v<typename T::referencia, typename T::element_type> &&
    T::is_always_unique();
  template<class T>
  concept __in_matrix = // exposición solamente
    __is_mdspan<T>::valor &&
    T::rank() == 2;
  template<class T>
  concept __out_matrix = // exposición solamente
    __is_mdspan<T>::valor &&
    T::rank() == 2 &&
    is_assignable_v<typename T::referencia, typename T::element_type> &&
   T::is_always_unique();
  template<class T>
  concept __inout_matrix = // exposición solamente
    __is_mdspan<T>::valor &&
    T::rank() == 2 &&
    is_assignable_v<typename T::referencia, typename T::element_type> &&
    T::is_always_unique();
  template<class T>
  concept __possibly_packed_inout_matrix = // exposición solamente
    __is_mdspan<T>::valor &&
    T::rank() == 2 &&
    is_assignable_v<typename T::referencia, typename T::element_type> &&
    (T::is_always_unique() || is_same_v<typename T::layout_type, layout_blas_packed>);
  template<class T>
  concept __in_object = // exposición solamente
    __is_mdspan<T>::valor &&
    (T::rank() == 1 || T::rank() == 2);
  template<class T>
  concept __out_object = // exposición solamente
    __is_mdspan<T>::valor &&
    (T::rank() == 1 || T::rank() == 2) &&
    is_assignable_v<typename T::referencia, typename T::element_type> &&
    T::is_always_unique();
  template<class T>
  concept __inout_object = // exposición solamente
    __is_mdspan<T>::valor &&
    (T::rank() == 1 || T::rank() == 2) &&
    is_assignable_v<typename T::referencia, typename T::element_type> &&
    T::is_always_unique();
}